
ROBUST ANALYSIS AND CONTROL DESIGN OF THE HEAD-NECK SYSTEM

By

Andrey L. Maslennikov

A THESIS

Submitted to
Michigan State University

in partial fulfillment requirements
for the degree of

Mechanical Engineering – Master of Science

2013



ABSTRACT

ROBUST ANALYSIS AND CONTROL DESIGN OF THE HEAD-NECK SYSTEM

By

Andrey L. Maslennikov

Neck pain is the one of the most frequently reported musculoskeletal complaints. A

systematic evaluation of a neck condition may allow clinicians to diagnose possible prob-

lems that a subject might have in an objective manner. In this dissertation, we propose

a systematic methodology for measuring robustness of the head-neck system that can be

used as an objective measure of the head-neck system characteristics. Our method builds

on computing the structured singular value µ as a measure of robustness for a particular

subject. The µ value is computed under the consideration that the variability of head-neck

system model parameters for a tested subject comes from the estimation errors as well as

from the natural variation of biological parameters. Both sources of subject’s variability

determine uncertainty levels that are within some physiologically reasonable ranges. In

addition, we analyzed worst-case scenarios of the head-neck system model. The worst-case

analysis can provide us with a possible tool to predict what would be the combination of

parameters that may cause the worst-case performance. Finally, the design of the robust

controller for the head-neck system is also discussed in this dissertation.
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1 Introduction

One of the most frequently reported musculoskeletal complaints is neck pain [Côté

et al., 1998], [Holmström et al., 1992]. The current method of evaluation is primarily

based on (subjective) surveys from subjects; see [Langley and Sheppeard, 1985]. Hence,

researchers have been working on developing an objective evaluation of neck pain subjects

and classification of subjects between control and pain groups. Such measure can yield a

numerical value, which may estimate and/or predict conditions of the head-neck system.

Our motivation is to develop a rigorous procedure of computing such objective measure.

A mathematical description of the head-neck system, as a dynamical system, can

be described as an interconnection of transfer functions including an internal controller,

muscle dynamics, plant dynamics (skeleton with ligaments), and neurological delays. Pre-

vious studies proposed different models of the head-neck system dynamics, for example,

[Hannaford et al., 1986], [Huebner et al., 1992], [Peterson et al., 2001], and [Chen et al.,

2002]. In this dissertation we adopt a model with a fixed structure developed in [Priess

et al., 2012]. In their study, performance of the head-neck system was investigated during

a tracking task, where participants were asked to follow a moving target using a custom-

made head-mounted laser device. Parameters of the developed model were estimated from

time series data produced by a target trajectory as an input and a laser dot trajectory

as an output. The estimated model showed good fitting that makes it applicable to our

studies.

It should be noted that a fixed low-order linear model structure may neglect nonlinear

and/or high-order dynamics of the system that may result in modeling errors. In addition,

such models do not take into account a discrete decision making process that a subject

may have, which results in hybrid systems. Furthermore, parameters of the head-neck

system could vary within some physiological ranges due to, for instance, fatigue, task

assignment, control strategy and so on; see [Davids et al., 2006] and [Newell and Corcos,
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1993]. Moreover, parameters of the head-neck system are not known and, consequently,

these parameters should be estimated using system identification techniques discussed in

[Ljung, 1999], [Forssell and Ljung, 1999], and [Gustavsson et al., 1977]. Assuming the

system is time-invariant, the estimated parameters using a finite number of observations

will have estimation errors. Therefore, in addition to the biological variability in system

parameters, the estimation errors need to be also taken into account when analyzing

stability and/or performance of the head-neck system.

From an engineering perspective, one of the most important questions is whether or

not the dynamical system is stable. On the other hand, from a medical point of view,

mathematical instability of the head-neck model could be related to an injury. By consid-

ering a set of all possible models due to the biological variability and parameter estimation

errors we need to investigate robust stability of an uncertain model rather than of stability

of a single true (nominal) model. Robust stability tests deal only with system’s internal

behavior assuming no existence of any external excitation. On the other hand, humans

aim to control their dynamics under the influence of external inputs/commands as can

be seen in position-tracking tasks. Robust performance analysis may be used to inves-

tigate how a dynamical system attenuates the signals of the performance channels from

exogenous influences in spite of uncertainties. In addition, robust performance analysis

may help us to classify subjects between control and pain groups as we will show further.

Robust stability and robust performance analyses of the head-neck system with respect to

its total variability could provide us with objective evaluations of the head-neck system.

There exist previous attempts to conduct robust analysis of human dynamics. The

robustness of a human postural control system focusing on stability margins under impul-

sive perturbations was analyzed in [Hur et al., 2010]. The robust space of a PD controller

structure of a human postural control system was investigated in [Masani et al., 2006].

A methodology of designing an optimal control for postural systems was proposed in [Xu

et al., 2010]. However, in those studies uncertainties either in a model or estimated sys-
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tem parameters were not considered. Therefore, it is crucial to develop a new approach of

measuring robustness of the head-neck system with respect to a set of all possible models

for a particular subject. In the past, an estimated system was considered to be the true

nominal system, and the stability analysis was then followed on the estimated system.

There has been no effort to gauge uncertainties in such systems from experimental data

in order to analyze stability and performance.

The stability and performance analyses of systems subjected to structured uncertain-

ties can be addressed with the structured singular value, µ [Zhou and Doyle, 1998]. The µ

value can be used as a measure of system’s robust stability and robust performance. Ro-

bust control theory and µ analysis are described in [Skogestad and Postlethwaite, 2005],

[Zhou and Doyle, 1998], [Balas et al., 2001], and [Balas et al., 2006]. Computing the

µ value with the exact combination of system parameters that will yield the worst-case

performance for a given set of models, is also important. From a medical point of view,

analyzing such worst-case performance and its associated parameters for a given subject

could provide the worst-case scenario, which the subject should avoid.

The contributions of this dissertation are as follows. We provide a description of the

proposed methodology for evaluating subjects’ head-neck system in an objective manner.

In comparison to approaches based on surveys [Langley and Sheppeard, 1985], our measure

will be objective. To begin with, we describe the experimental setup that is used to

collect data from subjects for a head-neck position-tracking task. We then show how

the parameters of the head-neck system model can be estimated using nonlinear least

squares optimization by minimizing the difference between the actual subject’s response

and the simulated model response. With a set of estimated parameters for each subject we

present a way to compute biological, estimation, and, eventually, subject’s total parameter

variabilities. Due to variability in parameters the dynamics of the head-neck system are

described by a set of dynamical models for which a robust analysis should be applied. We

define necessary criteria for the robust analysis of the head-neck system based on the H∞
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norm of the sensitivity function. For the robust performance analysis we incorporate the

performance weighting function, which is used to define a boundary between satisfactory

and not satisfactory performance. Further, we give an interpretation of the µ value as

an objective measure of the head-neck system’s condition. Using the µ value we analyze

which block which individual parameter of the head-neck system are critical to system’s

robust performance. Then we use the worst-case robust analysis to show how a likelihood

of being injured for a tested subject can be suggested. Finally, we describe the robust

control of the head-neck system that possibly can be used as a guideline for physical

therapists in developing treatment for patients. In order to show the applicability of

the proposed methodology we perform all aforementioned analyses for experimentally

obtained data from 5 subjects. The computed µ values allow us to see similarities and

differences among subjects.

The remainder of this dissertation is organized as follows. Chapter 2 provides a de-

scription of the head-neck system with uncertainties. In Chapter 3 we describe an ex-

perimental setup that we use for collecting data from subjects and an estimation process

of the head-neck model parameters and describe how the biological, estimation and total

subject variabilities could be obtained. In Chapter 4 we briefly review criteria for robust

stability and robust performance of the system for our further analyses. In Chapter 5 we

show which components (control, muscle dynamics, plant dynamics or delays described

in Chapter 2) of the head-neck system are most critical to robust stability and robust

performance of the system. In Chapter 6 we investigate how each individual parametric

uncertainty affects robust stability and robust performance of the head-neck system. The

worst-case analysis of the head-neck system is presented in Chapter 7. The design of a

robust controller with a fixed structure for the head-neck system model is discussed in

Chapter 8. Finally, we provide concluding remarks in Chapter 9.
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Figure 1: Head-neck system model.

2 Head-neck System Model Description

In this chapter we provide a description of the head-neck system model. A variety

of the head-neck system models exist. For example, a sixth-order nonlinear model was

used in [Hannaford et al., 1986] and smooth pursuit of an eye-head tracking system with

their own model was analyzed in [Huebner et al., 1992]. We adopt a model from [Priess

et al., 2012] considering the good fit to preliminary experimental data. This model can

be used to represent head-neck dynamics in both flexion/extension and axial rotation. To

simplify the presentation, we investigate only flexion/extension case. However, the exact

same approach can be applied to the axial rotation case in a straightforward manner.

Our model, shown in Fig. 1, contains a neurological (visual) delay in the input channel

and a follow-up closed-loop subsystem. This subsystem contains a controller, muscle

dynamics, and plant (skeleton and ligaments) dynamical blocks in the forward loop and a

neurological delay in the feedback channel. Each component of the head-neck system can

be represented by a transfer function in the s-domain; see [Skogestad and Postlethwaite,

2005]. Here we denote the neurological delay in the input channel by Di(s), the controller

by K(s), muscle dynamics by Q(s), plant dynamics by P (s), and the neurological delay

in the feedback channel by Df (s).

The neurological delays, as a part of postural control system, were already considered

in previous works. For example, the step response of eye motion and the neurological

(visual) delay in the input channel were analyzed in [Carl and Gellman, 1987]. The delay

in the input channel as a component of the head-neck system model is also mentioned

in [Peterson et al., 2001] and [Chen et al., 2002]. A neurological delay in the forward
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loop of the head-neck system model and the corresponding time constant were considered

in [Robinson et al., 1986]. The existence of the delay in the feedback channel is also

mentioned in [Masani et al., 2006]. Note that for computational simplicity, we used a

first-order Padé approximation for delays, but a higher-order approximation could also

be used.

The controller K(s) is assumed to have a fixed PID structure. A PID or PD controller

structure is one of the most popular choices for studies in postural control. For example,

a PD controller was used to simulate human posture control in [Masani et al., 2006]. Q(s)

is modeled by a first-order transfer function and its structure was proposed in [Peterson

et al., 2001] and [Chen et al., 2002].

Plant dynamics, P (s), is represented by a second-order transfer function and it was

used in [Peng et al., 1996], [Chen et al., 2002], and [Robinson et al., 1986]. The values

of stiffness and damping ratio were experimentally obtained in [Bourdet and Willinger,

2008] and [Pankoke et al., 1985]. Plant dynamics, by considering the structure of the

skeleton, was analyzed in [Reber and Goldsmith, 1979] and [Vette et al., 2011].

Finally, the described blocks of the head-neck system, in terms of transfer functions,

are defined as follows.

Di(s) = e−τis ≈ 2− τis
2 + τis

,

Df (s) = e
−τf s ≈

2− τfs
2 + τfs

,

K(s) = Kp +Kds+ Ki
s
,

Q(s) = 1
τms+ 1 ,

P (s) = 1
Is2 + bs+ k

,

(1)
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and the closed-loop transfer function M(s) of the head-neck system model as follows.

M(s) = Di(s)
K(s)Q(s)P (s)

1 +K(s)Q(s)P (s)Df (s) . (2)

3 Parameter Estimation

The parameters of the head-neck system model should be estimated. In order to

estimate these parameters a physical experimental setup for the position-tracking task

was constructed. In this experimental setup a tested subject sit on the chair in front

of the screen. A projector was placed above a tested subject and the laser was rigidly

mounted on subject’s head. During this position-tracking task, an individual subject was

asked to follow a projected cross on the screen in front of the subject with a dot from

a laser on the head. Positions of both dots were calculated from images captured by a

video camera and saved as to time series data. The experimental procedure and setup was

described in detail previously in [Priess et al., 2010]. The diagram of the experimental

setup is presented in Fig. 2.

In our particular case, five healthy subjects signed their informed consent form and par-

ticipated in the experiments. Each individual subject completed five trials of a position-

tracking task on two different days. This experimental procedure was approved by the

Michigan State University Biomedical and Health Institutional Review Board (IRB# 12-

456).

Parameters of the head-neck system model were estimated using these time series data

sets for each trial independently. Each estimation provides us with a vector of estimated

parameters θ̂, which has the following structure

θ̂ = [K̂p, K̂d, K̂i, τ̂m, Î , b̂, k̂, τ̂f , τ̂i]> ∈ R9, (3)
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Figure 2: The experimental setup of a head-neck position-tracking task. Adapted from
[Priess et al., 2012]. (For interpretation of the references to color in this and all other
figures, the reader is referred to the electronic version of this thesis.)

where the inertia parameter I, is computed using subject’s weight with methods described

in [Winter, 2004] and [Yoganandan et al., 2009].

The parameter vector θ is estimated using the experimental input and output data.

Based on our preliminary studies, a pulse-width modulated (PWM) signal was chosen as

an input type for our experiments. The time between signal changes varied from 0.3 to

0.9 seconds randomly with a normal distribution in order to eliminate the predictability

aspect. In this way, we eliminate any feed-forward actions in the closed-loop system while

focusing on feedback mechanism. Another reason of using a time-varying step function

is to generate the signal with a desired frequency spectrum, as can be seen from Fig. 3.

The desired frequency spectrum of the input signal should be such that it covers the

bandwidth of the head-neck system, which is about 1 Hz, according our preliminary

8



Figure 3: Power spectral density of the input signal.

studies. The output signal is the actual subject’s response during the position-tracking

experiment. Both input and output signals were simultaneously captured by a video

camera at frequency 60 Hz in order to remove any delays in the projection.

The parameter vector θ is estimated based on nonlinear least-square optimization. It’s

description can be found in [Levenberg, 1944], [Marquardt, 1963], and [Dennis Jr., 1977].

In our case, we are looking for such vector θ within a set Θ that minimizes the difference

between the experimentally obtained subject’s response Y and the simulated subject’s

response F (θ). In other words, vector θ̂ contains the parameters such that the simulated

response F (θ̂) fits best to the actual subject’s output Y . Mathematically this method can

be described as follows.

θ̂ := arg min
θ∈Θ
‖F (θ)− Y ‖22, (4)

where Θ is a compact set whose element-wise boundaries are defined by the parameter-

wise variability of vector θ over the whole population. In other words, the set Θ includes
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all physiologically possible parameters of the head-neck system model.

To perform the robust analysis we need to characterize uncertainties in system param-

eters. In our case, each parametric uncertainty is within a range defined by the biological

and estimation variabilities. In order to determine the subject’s biological variability, we

perform a set of experimental trials. The parameters of the head-neck system model are

estimated using data from each individual trial. Furthermore, n denotes the number of

trials, which in our experiments is 10 for each subject. Having a set of ten vectors θ̂,

we compute three vectors: θ̂avg, θ̂min, and θ̂max. θ̂avg is the vector with the average

values of the estimated parameters, and θ̂min and θ̂max defines the boundaries of the es-

timated parameters or the element-wise ranges in which the parameters of the head-neck

system could vary for a tested subject due to the biological variability. Here and further,

index i, such that i ∈ I := {1, · · · , n}, denotes the number of trial and index j, such

that j ∈ J := {1, · · · , 9}, denotes a particular element in θ̂. The parameter vector θ̂avg

determines the nominal model. These three vectors are defined as follows.

θ̂avg = E
i∈I

[θ̂i],

θ̂j min = min
i∈I

(θ̂ij),

θ̂j max = max
i∈I

(θ̂ij)

(5)

The total subject’s variability is defined as a union of the biological and estimation

variabilities. To this end, we also consider the estimation error for a given set of esti-

mated parameters of a subject. To compute the total subject’s variability we perform the

Monte-Carlo simulations, where for each estimated θ̂i we simulate the model, as shown

in Fig. 4, N = 50 times with different realizations of additive white noise in muscles. The

parameters of the model are estimated for each Monte-Carlo simulation. Using the whole

set of these estimates the parameter-wise boundaries (vectors θ̂min, tot and θ̂max, tot) of

the estimates are computed in a same way as it was done for the biological variability

10
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Figure 4: Head-neck system model for Monte-Carlo simulations

using Eq. (5).

These two vectors θ̂min, tot and θ̂max, tot, which are parameter-wise boundaries, form

a compact set Θsubj uniquely for an individual subject. Finally, the total subject’s vari-

ability is defined as follows.

θ̂ ∈ Θsubj , with some probability α (6)

where the associated probability α can be obtained from Θsubj and the estimation error

statistics.

Since our estimation is based on signal statistics and randomness in human behavior,

the vector of the estimated parameters θ̂ and the whole set Θsubj are estimated with some

probability α as in Eq. (6). Additionally, the natural description of the uncertainty level

for the estimation error variability can be made more explicitly for the robust stability

and performance analyses. This aspect was investigated in [Ljung, 1999], [Bombois, 2000],

[Bombois et al., 2001], and [Gevers et al., 2003]. According to those studies, the estimated

parameter θ̂ lies in the ellipsoidal uncertainty region Uol with some probability α(q, χ) =

Pr(χ2(q) < χ), where χ2(q) the chi-square distribution with q parameters. The ellipsoidal

uncertainty region Uol defined as follows.

Uol = {θ|(θ − θ̂)>P−1
θ (θ − θ̂)> < χ}, (7)

where Pθ is the covariance matrix of θ̂, which is different from the formulation in Eq. (6).
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Figure 5: Input and output data collected from subject 1 and the response of the estimated
model.

The estimated nominal parameters for each subject as well as its biological and total

variabilities are listed in three tables presented in Appendix A. An example of the input

signal and actual subject’s response with the best fitted simulated response is presented

in Fig. 5. As can be noted, the simulated response (green dashed line) of the model with

the set of fitted parameters θ̂1 and the simulated response of the nominal model (cyan

dashed-dotted line) are close to the actual subject’s response at trial 1. This means that

the model structure with the estimated parameters allows us to capture dynamics of the

system. Nevertheless, small deviations between the simulated response and the actual

subject’s output, caused by the estimation and modeling errors, could be observed.

In general, we observed some general trends in the estimated parameters from subjects.

However, estimates for subject 5 are not consistent with others and the total variability

for that subject is higher than those of others. The results of Monte-Carlo simulations for

subject 5 are shown in Fig. 7. From this figure it could be noted that a set of simulated
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Figure 6: Monte-Carlo simulations for the estimated model for trial 1, subject 1.

responses as well as a set of fitted models are not so close to the actual subject’s response

for subject 5 in comparison to the case of subject 1 (see Fig. 6). Such deviations can be

caused by error and uncertainty in modeling.

4 Robust Stability and Performance Criteria

An important question in analysis and control design of dynamical systems is about

stability of these systems. However, with the presence of uncertainties in a dynamical

system the robust stability analysis has to be involved. Robust stability is stability of an

uncertain dynamical system with respect to a set of all uncertainties specified for that

dynamical system. To answer this question, a dynamical system has to be transformed

to the form presented in Fig. 8 a) where G(s) is the generalized plant and ∆st is the

uncertainty matrix. In our case all uncertainties are parametric, in other words, struc-

tured, and; consequently, the matrix ∆st is block diagonal uncertainty matrix. Taking an
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Figure 7: Input and output data collected from subject 1 and the response of the estimated
model.

advantage of structured uncertainties the criterion of determining whether a dynamical

system is robustly stable with respect to its uncertainties can be formulated in terms of a

structured singular value µ. With the µ value a dynamical system is said to be robustly

stable if and only if the following condition is satisfied (see Theorem 10.7 in [Zhou and

Doyle, 1998])

sup
ω∈R

µ∆st(G(jω)) ≤ β, (8)

with β > 0 such that ‖∆st‖∞ < 1/β, where the µ value is defined as follows.

µ∆st(G) = 1
min{σ̄(∆st) : det(I −G∆st) = 0} . (9)

The value of 1/µ has a physical meaning of the smallest perturbation that makes the

generalized plant G(s) unstable. Therefore, µ has been used as a measure of system’s

robustness.
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Figure 8: Robust tests diagrams: a) robust stability test, b) robust performance test.

The robust stability of a dynamical system is an important question; however, the real

goal of the analysis and control design is to satisfy predefined performance characteristics.

It is possible that a system is internally stable, but it performs poorly. Thereby, the robust

performance analysis has to be involved. The robust performance analysis answers the

question whether or not a dynamical system meets (or has a good performance) desired

performance specifications. The diagram for the robust performance test is presented in

Fig. 8 b) and as it can be noticed the robust performance test is transformed to the robust

stability test with G(s) combined with a performance weighting function wp(s) into the

weighted generalized plant Gp(s), and ∆st combined with ∆f into ∆pf as follows.

∆pf =

∆st 0

0 ∆f

 , (10)

where ∆f is the fictitious uncertainty matrix, which characterizes the disturbance input,

and wp(s) is the performance weighting function, which establishes the desired perfor-

mance objective. With this formulation, a good robust performance means that the

generalized plant Gp(s) with the disturbance input r(t) and the error output e(t) (see

Fig. 8 b) and Fig. 9) is robustly stable with respect to a set of all uncertainties specified
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Figure 9: Head-neck system model with performance scaling.

for that dynamical system in ∆pf .

In terms of the µ value, an uncertain dynamical system is said to have good robust

performance if the following condition is satisfied

sup
ω∈R

µ∆pf (Gp(jω)) ≤ β, (11)

where β > 0 such that ‖∆pf‖∞ < 1/β. It is also clear that robust performance implies

robust stability but not vice versa. The performance of a MIMO dynamical systems

could be characterized in terms of H∞ norm of the sensitivity function that is the transfer

function from the input r(t) to the output e(t), as shown in Fig. 9. The robust performance

criterion using the sensitivity function can be specified as follows.

‖S‖∞ ≤ β,∆pf ∈ RH∞, ‖∆pf‖∞ < 1/β, (12)

where S(s) is the “weighted” sensitivity function defined as follows.

S(s) = S̄(s)wp(s), where S̄(s) = 1
1 +K(s)Q(s)P (s)Df (s) . (13)

The performance weighting function wp(s) is described using parametersA,B, ωb, and q

as follows.

wp(s) = (s/B1/q + ωb)q

(s+ ωbA
1/q)q

, (14)
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where parameters of wp(s) are chosen such as A = 1.0, B = 4.0, wb = 0.01 Hz, and

q = 20.0. Note that the choice of the performance weighting function is not restricted

to the form presented in Eq. (14). In this form wp(s) acts as a weighting function,

which suppresses the magnitude of the sensitivity function S̄(jω) in the frequency range

above ωb and amplifies it over the frequency range below ωb. The parameters A and B

define suppression/amplification levels and the parameter q is used to make the transition

between two frequency ranges more narrow. Mathematically, the effect of the wp(s) on

the H∞ norm of the sensitivity function S̄ can be shown as follows.

|S̄(jω)| ≤ 1
|wp(jω)|

⇔ |S̄(jω)wp(jω)| ≤ 1

⇔ ‖S̄wp‖∞ ≤ 1, for ∀ ω ∈ R

⇔ ‖S‖∞ ≤ 1

(15)

The performance weighting function provides a flexible way to define performance

specifications for the robust performance analysis of the head-neck system. An appropriate

choice of the form and parameters of wp(s) that reflects a performance boundary between

subjects in control and pain groups can be used to classify subjects. The difference

between value of ‖S‖∞ and 1 may be related to the likelihood for a particular subject

to be injured and a classification criterion with an appropriate choice of wp(s) can be

determined such that

‖S‖∞ ≤ 1, for ∀ ω ∈ R, then the performance specification is met,

‖S‖∞ > 1, for ∀ ω ∈ R, then the performance specification is not met.
(16)
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Uncertain block Subj. 1 Subj. 2 Subj. 3 Subj. 4 Subj. 5

K(s) 1.554 1.149 1.058 1.176 1.754

Q(s) < 10−3 < 10−3 < 10−3 < 10−3 < 10−3

P (s) 0.893 0.882 0.699 0.769 0.997
Df (s) 0.943 0.916 0.996 0.930 1.215

Table 1: µ values for the robust stability analysis with respect to uncertainties in the
head-neck system model blocks.

Uncertain block Subj. 1 Subj. 2 Subj. 3 Subj. 4 Subj. 5

K(s) 1.865 1.376 1.255 1.430 2.076
Q(s) 0.549 0.626 0.521 0.570 0.568
P (s) 0.957 0.924 0.746 0.792 1.060
Df (s) 1.204 1.064 1.058 1.046 1.491

Table 2: µ values for the robust performance analysis with respect to uncertainties in the
head-neck system model blocks.

5 Robust Analysis of the Head-neck System Compo-

nents

In this chapter we provide the results of the µ analysis for the case when uncertainties

exist in each individual block of the head-neck system. We are interested in determining

which block with uncertainties (controller K(s), muscle dynamics Q(s), plant dynamics

P (s) or delay in the feedback channel Df (s)) is most critical to robust stability and

robust performance of the whole head-neck system. In order to do this, we consider that

only one particular block has uncertainties while all other system’s blocks are fixed at

their nominal parameters. The computational results of the robust stability and robust

performance tests for each individual uncertain block are presented in Table 1 for robust

stability and in Table 2 for robust performance tests.

The highest µ value corresponds to the block of the closed-loop system which is most
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Figure 10: µ values for the robust performance analysis with respect to uncertainties in
the head-neck system model blocks.

critical to system’s stability and performance. We can notice that the computed µ values

for different uncertain blocks for the robust stability as well as for the robust performance

have approximately similar trends among all subjects.

For the robust stability case we can observe that the muscle dynamics block does not

play a significant role; on the contrary, uncertainties in control block K(s) are most crucial

to robust stability of the head-neck system for all subjects. At the same time, uncertainties

in plant dynamics and in the feedback delay affect robust stability approximately at the

same level. We can see the same trends from the robust performance analysis. The

illustration of µ values from the robust performance tests for all tested subjects presented

in Fig. 10.

It is also interesting to note that all µ values for all considered cases for subject 5

is higher than for all other subjects. This correlates with our observation about the

estimation variability of subject 5 that is higher than those of other subjects. It is also
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Test Subj. 1 Subj. 2 Subj. 3 Subj. 4 Subj. 5

Stability 3.344 2.450 1.917 2.265 3.405
Performance 3.683 2.666 2.102 2.503 3.766

Table 3: µ values for the robust stability and robust performance analyses with respect
to all uncertainties.

interesting to compare µ values related to the whole uncertain head-neck system. As can

be seen from Table 3 subject 5 has the highest µ values among others for both robust

stability and robust performance tests. At the same time, the µ values for subject 3 are

the smallest ones. In other words, subject 3 is the most robust subject, whereas subject 5

is the least robust among other subjects.

6 Individual Parametric Uncertainty Effect on Ro-

bust Stability and Performance

In this chapter we analyze how each individual uncertainty affects robust stability

and robust performance of the head-neck system. To perform such analysis we assume

that only one parameter of the system is uncertain. All other parameters are fixed at

their nominal values. Results of robust stability and robust performance tests for each

individual parameter are presented in Table 4 and Table 5, respectively.

The delay in the feedback channel is the almost primary parameter affecting robust

stability of the system. This is essential from the feedback control point of view. For two

subjects the analysis also shows that the integral gain may affect robust stability of the

head-neck system.

More interesting observations can be made from the results for the robust performance

tests. Delay in feedback still significantly influence system performance; however, depend-

ing on the subject it may not be the most crucial parameter. Control gains are now the
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Parameter Subj. 1 Subj. 2 Subj. 3 Subj. 4 Subj. 5

Kp < 10−3 < 10−3 < 10−3 < 10−3 < 10−3

Kd < 10−3 < 10−3 < 10−3 < 10−3 < 10−3

Ki < 10−3 < 10−3 0.897 < 10−3 < 10−3

τm < 10−3 < 10−3 < 10−3 < 10−3 < 10−3

I < 10−3 < 10−3 < 10−3 < 10−3 < 10−3

b < 10−3 < 10−3 < 10−3 < 10−3 < 10−3

k < 10−3 < 10−3 < 10−3 < 10−3 < 10−3

τf 0.943 0.916 0.996 0.930 1.215

Table 4: µ values for the robust stability analysis with respect to individual uncertainty.

Parameter Subj. 1 Subj. 2 Subj. 3 Subj. 4 Subj. 5

Kp 1.261 1.144 0.904 1.111 1.190
Kd 1.696 0.917 0.732 0.869 1.959
Ki 0.971 1.000 0.930 0.909 1.080
τm 0.549 0.626 0.521 0.570 0.568
I 0.463 0.379 0.359 0.374 0.502
b 0.911 0.740 0.739 0.694 1.042
k 0.881 0.870 0.713 0.783 0.966
τf 1.204 1.064 1.058 1.046 1.491

Table 5: µ values for the robust performance analysis with respect to individual uncer-
tainty.

most influential. The parameters of plant dynamics could also affect robust performance

of the system significantly but according to µ values their impact on system’s performance

is slightly less than those of control block parameters.

It seems that uncertainties in muscle dynamics and in inertia of the plant are less

important for robust performance of the head-neck system. However, the corresponding

µ values are not too small to neglect parameters τm and I of these blocks.
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7 Worst-case Performance Analysis

Worst-case analysis provides us with the system parameters that lead to the worst-case

performance. The procedure of computing such worst-case parameters was developed in

[Shin et al., 2001] with an application to the X-38 crew return vehicle. In the application

to the head-neck system computation of the worst-case scenario, we want to determine a

vector of parameters θwc such that the magnitude of the sensitivity function S(θwc, s) is

highest over the whole set of possible models defined by the subject’s variability Θsubj .

Mathematically this problem can be defined as follows.

θwc = arg max
θ∈Θsubj

‖S(jω)‖∞. (17)

The worst-case analysis is of interest since it shows the worst-performance of a tested

subject with that specific combination of parameters computed from the analysis. As-

suming that physiological problems with the subject’s plant dynamics can be independent

from the rest of the system dynamics, we investigate three worst-case scenarios. The first

scenario (denoted as KQPDf WC) is related to the worst-case of the whole head-neck

system with uncertainties in all parameters. In the second scenario (KQDf WC) only

uncertainties in the control block, muscle dynamics and the delay in the feedback channel

are considered. Finally, the worst-case scenario of only the plant dynamics is considered

(P WC).

In terms of robust control, the worst-case is defined as the magnitude peak of the

sensitivity function (weighted sensitivity in general) of a system. The critical frequency

fcr and the magnitude corresponding to this peak. Consequently, our interest is not only

to compute the parameters of the system that lead to the worst-case scenario, but also

to identify the corresponding frequency at this magnitude peak. Values of ‖S‖∞ are

computed as lower and upper bounds. The upper bound is of interest. The parameters
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WC Scenario Subj. 1 Subj. 2 Subj. 3 Subj. 4 Subj. 5

KQPDf 0.010 0.113 0.085 0.120 0.010
KQDf 0.056 0.209 0.195 0.230 0.064
P 1.111 1.510 1.618 1.232 0.015

Table 6: Worst-case critical frequencies.

WC Scenario Subj. 1 Subj. 2 Subj. 3 Subj. 4 Subj. 5

KQPDf inf Inf Inf Inf Inf
KQDf Inf Inf Inf Inf Inf
P -2.44 -4.20 -6.86 -6.21 9.42

Table 7: Worst-case ‖S‖∞ values.

that lead to the worst-case scenario are related to the lower bound case, but the infinite

upper bound is related to the case when magnitude peak is sharp and the computation of

the exact value of ‖S‖∞ is problematic. The critical frequencies fcr are listed in Table 6

as well as the magnitudes of the peak ‖S‖∞ are in Table 7.

The computed worst-case parameters are listed in Table 12 in Appendix B. A couple

of observations can be made using this table for the worst-case scenarios KQPDf and

KQDf . The proportional gain Kp for all subject tends to be the smallest value within the

subject’s variability. The integral gain Ki tends to increase (except subjects 1 and 5 in

KQPDf worst-case scenario) but not necessarily up to the upper bound within subject’s

total variability. At the same time, the derivative gain Kp values are not consistent. The

values of the delay time constant τf and the parameter τm of the muscle dynamics block

are maximal within individual subject’s variability. There is no strong consistency in the

worst-case parameters of the plant dynamics block.

Other observations from the worst-case analyses can be made from Tables 6 and 7.

First, the worst-case scenarios KQPDf and KQDf primary occur at frequencies below

0.3 Hz. In addition, the critical frequency for the worst-case scenario KQPDf is smaller
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than that of KQDf . For subjects 1 and 5 fcr for the worst-case scenarios KQPDf tends

to zero. At the same time, the worst-case scenario P occurs at frequencies above 1.0 Hz,

which significantly distinguish this worst-case scenario from two others.

The magnitude peaks for the worst-case scenarios KQPDf and KQDf are sharp and

the upper bound of the ‖S‖∞ is infinity. However, the magnitude peaks of the worst-case

scenario P are smooth and the corresponding values of the ‖S‖∞ are finite. In addition,

the ‖S‖∞ value for subject 5 is higher than 0 dB and for other subjects this values are

less than 0 dB. This means that the worst-case scenario P for subjects 1, 2, 3, and 4 is

still satisfy performance specifications.

Finally, the illustration of the frequency responses of the sensitivity functions, in-

cluding worst-case sensitivity functions, is presented in Figs. 12, 14, 16, 18, and 20 in

Appendix B as well as the simulated time responses of the head-neck system model with

the worst-case parameters in Figs. 13, 15, 17, 19, and 21. Parameters of the head-neck

system model that lead to the worst-case are listed in Table 12 of Appendix.

8 Robust Control Design

In this chapter we present results of the optimally (or suboptimally) synthesized ro-

bust controller for the head-neck system. The synthesized robust controller could help

in planning rehabilitation. The robust controller is designed using the nonsmooth opti-

mization, which has to be involved due to the structural constraints (PID structure in our

case) imposed on the controller. In our case, this procedure is a search of a combination of

the controller gains Kp, Kd, and Ki (within the subject’s variability) that minimizes the

H∞ norm of the sensitivity function S(jω). Mathematically, this problem is formulated

as follows.

k := arg min
k∈K
‖S(jω, θ, k)‖∞, (18)
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Par. Subj. 1 Subj. 2 Subj. 3 Subj. 4 Subj. 5
Nom. Tuned Nom. Tuned Nom. Tuned Nom. Tuned Nom. Tuned

Kp 0.287 0.116 0.923 0.196 0.890 0.196 0.835 0.179 0.180 0.089
Kd 0.196 0.048 0.263 0.056 0.359 0.066 0.241 0.054 0.235 0.044
Ki 0.030 0.000 0.115 0.000 0.083 0.061 0.096 0.042 0.048 0.000

Table 8: Parameters of the tuned robust controller of the head-neck system.

where k is a vector that contains the controller gains (Kp, Kd, and Ki), and K is a closed

set prescribed by the parameter-wise variabilities of those control gains from Θsubj .

In particular the nonsmooth H∞ synthesis proposed by [Apkarian and Noll, 2006] and

[Bruisma and Steinbuch, 1990] is used, which is an effective way to solve a non-convex

H∞ synthesis problem where controller is subject to structural constraints.

The results are presented in Table 8.

The computed robust control gains are smaller rather than the estimated control gains.

In general, smaller control gains mean that robust control is less aggressive in comparison

to the estimated control. Another interesting observation is that the integral gain Ki in

the robust controller tends to be the smallest value within subjects’ variability. These

tendencies can be clearly seen in Fig. 11.

9 Conclusions

In this dissertation we proposed a new methodology of measuring robustness of the

head-neck system. This methodology is based on performing the robust stability and

robust performance analyses of the head-neck system with respect to uncertainties. Un-

certainties come from the biological variability of the parameters of the system and from

the estimation errors. The robust stability and robust performance tests provide us with

the µ value that may be used as an objective measure in clinical evaluation.
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Figure 11: Robust control design. Tuned control gains.

The general procedure for our approach can be summarized as follows:

1. Determine the biological variability of a subject via estimating a parametric model

using subject’s responses during position tracking experiments.

2. Determine the estimation variability of the dynamical model for a subject by ana-

lyzing estimation error statistics.

3. Determine the total variability as the union of the biological and estimation vari-

abilities.

4. Perform robust analyses of the system including robust stability and robust perfor-

mance tests.

5. Perform the worst-case performance analysis of the system.

6. Design an optimal (or suboptimal) robust controller for planning rehabilitation.
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We also applied our methodology using the experimental data collected with five adult

subjects. Using the experimental data we showed that the estimated parameters and

variabilities for the four subjects have a trend and the simulated responses are very close

to the actual subjects’ responses. Our experimental setup allows us to capture dynamics

of the head-neck system. Subject 5 was exceptional showing relatively large modeling

errors.

The robust analysis of each individual uncertain block of the head-neck system showed

a strong trend in the µ values for different blocks among tested subjects.

In the robust analysis of each individual uncertainty we noted that robust stability of

the system was affected by the delay in the feedback channel and for some subjects by

the integral gain of the PID controller. In the case of robust performance, all individual

uncertainties affected system’s performance. The control gains and delays in feedback are

more crucial; however, uncertainties in plant dynamics as well as in the muscle dynamics

block cannot be neglected.

With the worst-case analysis we can clearly see that the worst-case scenario for the

whole system occurs at frequencies below 0.150 Hz and the worst-case scenario with

uncertainties in control, muscle dynamics and delays in feedback only occurs in frequencies

within range from 0.150 to 0.300. At the same time, the worst-case scenario, in the case

when uncertainties exist in the plant only, occurs at frequencies above 1 Hz and its peak

has finite value.

The designed robust control design showed the tendencies that the control gains of

the robust controller are smaller than those of the estimated nominal system. In other

words, the robust controller tends to be less aggressive. The synthesized robust controller

could help in planning rehabilitation.
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28



A Estimated Parameters and Subject Variabilities

In this Appendix we provide tables with the estimated parameter values and deter-

mined subject’s biological and total variabilities. Parameters of the control block are

listed in Table 9, parameters of the plant and muscle dynamics blocks are in Table 10 and

the delay time constants are listed in Table 11.

Kp Kd Ki

Subj. 1
Nominal value 0.287 0.196 0.030
Bio. variability [0.087, 0.562] [0.130, 0.401] [0.000, 0.142]
Total variability [0.000, 1.406] [0.057, 1.365] [0.000, 0.591]

Subj. 2
Nominal value 0.923 0.263 0.115
Bio. variability [0.404, 1.304] [0.232, 0.317] [0.000, 0.502]
Total variability [0.274, 3.543] [0.111, 0.904] [0.000, 3.828]

Subj. 3
Nominal value 0.890 0.359 0.083
Bio. variability [0.320, 1.584] [0.210, 0.784] [0.000, 0.236]
Total variability [0.180, 2.981] [0.096, 1.143] [0.000, 1.617]

Subj. 4
Nominal value 0.835 0.241 0.096
Bio. variability [0.431, 1.117] [0.202, 0.355] [0.000, 0.399]
Total variability [0.241, 3.136] [0.073, 0.903] [0.000, 1.371]

Subj. 5
Nominal value 0.180 0.235 0.048
Bio. variability [0.033, 0.402] [0.102, 0.474] [0.000, 0.146]
Total variability [0.000, 1.355] [0.085, 7.225] [0.000, 1.587]

Table 9: Subjects’ variabilities and parameters of the nominal system. Control block
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τm I b k

Subj. 1
Nominal value 0.229 0.025 0.158 0.030
Bio. variability [0.097, 0.500] [0.024, 0.026] [0.107, 0.261] [0.006, 0.122]
Total variability [0.050, 0.500] [0.024, 0.026] [0.100, 0.916] [0.000, 0.424]

Subj. 2
Nominal value 0.148 0.033 0.228 0.073
Bio. variability [0.123, 0.186] [0.032, 0.035] [0.100, 0.282] [0.006, 0.209]
Total variability [0.050, 0.500] [0.032, 0.035] [0.100, 0.643] [0.000, 0.998]

Subj. 3
Nominal value 0.168 0.032 0.191 0.079
Bio. variability [0.105, 0.420] [0.031, 0.034] [0.100, 0.302] [0.014, 0.224]
Total variability [0.050, 0.500] [0.031, 0.034] [0.100, 0.712] [0.000, 0.466]

Subj. 4
Nominal value 0.160 0.027 0.176 0.074
Bio. variability [0.128, 0.217] [0.026, 0.029] [0.100, 0.223] [0.022, 0.182]
Total variability [0.050, 0.500] [0.026, 0.029] [0.100, 0.536] [0.000, 0.591]

Subj. 5
Nominal value 0.230 0.029 0.125 0.030
Bio. variability [0.050, 0.500] [0.028, 0.031] [0.100, 0.239] [0.000, 0.090]
Total variability [0.050, 0.500] [0.028, 0.031] [0.100, 5.281] [0.000, 1.493]

Table 10: Subjects’ variabilities and parameters of the nominal system. Muscle and plant
dynamics

30



τi τf

Subj. 1
Nominal value 0.181 0.135
Bio. variability [0.155, 0.209] [0.000, 0.447]
Total variability [0.130, 0.258] [0.000, 0.500]

Subj. 2
Nominal value 0.188 0.039
Bio. variability [0.165, 0.207] [0.000, 0.064]
Total variability [0.152, 0.247] [0.000, 0.237]

Subj. 3
Nominal value 0.150 0.011
Bio. variability [0.133, 0.171] [0.000, 0.036]
Total variability [0.116, 0.181] [0.000, 0.194]

Subj. 4
Nominal value 0.177 0.024
Bio. variability [0.158, 0.189] [0.000, 0.045]
Total variability [0.140, 0.211] [0.000, 0.186]

Subj. 5
Nominal value 0.192 0.106
Bio. variability [0.155, 0.244] [0.000, 0.285]
Total variability [0.108, 0.362] [0.000, 0.500]

Table 11: Subjects’ variabilities and parameters of the nominal system. Delays
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B Worst-case Analysis Numerical Results and Plots

In this Appendix we present the numerical results for the worst-case analysis of the

head-neck system. The computed worst-case parameter values are listed in Table 12. The

magnitude plots of the worst-case sensitivity functions are shown in Figs. 12, 14, 16, 18,

and 20. The corresponding simulated responses of the worst-case head-neck system models

are shown in Figs. 13, 15, 17, 19, and 21.
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Nominal KQDfP WC KQDf WC P WC

Subj. 1

Kp 0.287 0.004 0.000 nominal
Kd 0.196 0.623 0.946 nominal
Ki 0.030 0.006 0.141 nominal
τm 0.229 0.500 0.500 nominal
b 0.158 0.916 nominal 0.100
k 0.030 0.001 nominal 0.424
τf 0.135 0.500 0.500 nominal

Subj. 2

Kp 0.923 0.274 0.274 nominal
Kd 0.263 0.111 0.121 nominal
Ki 0.115 0.337 0.515 nominal
τm 0.148 0.500 0.500 nominal
b 0.228 0.643 nominal 0.100
k 0.073 0.000 nominal 0.998
τf 0.039 0.237 0.237 nominal

Subj. 3

Kp 0.890 0.180 0.180 nominal
Kd 0.359 1.012 0.805 nominal
Ki 0.083 0.476 1.469 nominal
τm 0.168 0.500 0.500 nominal
b 0.191 0.712 nominal 0.100
k 0.079 0.000 nominal 0.466
τf 0.011 0.194 0.194 nominal

Subj. 4

Kp 0.835 0.241 0.241 nominal
Kd 0.241 0.073 0.505 nominal
Ki 0.096 0.311 1.352 nominal
τm 0.160 0.500 0.500 nominal
b 0.176 0.536 nominal 0.100
k 0.074 0.000 nominal 0.000
τf 0.024 0.186 0.186 nominal

Subj. 5

Kp 0.180 0.000 0.000 nominal
Kd 0.235 0.085 0.641 nominal
Ki 0.048 0.021 0.126 nominal
τm 0.230 0.500 0.500 nominal
b 0.125 5.281 nominal 5.281
k 0.030 0.027 nominal 0.000
τf 0.106 0.500 0.500 nominal

Table 12: Worst-case parameter values of the head-neck system.
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Figure 12: Magnitude plot of the sensitivity functions. Subject 1.

Figure 13: Simulated responses of the worst-case head-neck system models. Subject 1.
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Figure 14: Magnitude plot of the sensitivity functions. Subject 2.

Figure 15: Simulated responses of the worst-case head-neck system models. Subject 2.
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Figure 16: Magnitude plot of the sensitivity functions. Subject 3.

Figure 17: Simulated responses of the worst-case head-neck system models. Subject 3.
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Figure 18: Magnitude plot of the sensitivity functions. Subject 4.

Figure 19: Simulated responses of the worst-case head-neck system models. Subject 4.
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Figure 20: Magnitude plot of the sensitivity functions. Subject 5.

Figure 21: Simulated responses of the worst-case head-neck system models. Subject 5.
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